Pulling It All Together

Systems-biology approaches offer new strategies for finding hard-to-identify drug targets for cancer.

Written byKate Yandell
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

© ISTOCK.COM/RAM CREATIV

Genetic mutations are a hallmark of cancer. Aided by advances in genomics and sequencing, researchers have therefore worked to identify mutations that drive cancer and to correct for them.

Determining the function of mutated “cancer genes” has led to notable successes in treatment. Imatinib (Gleevec) counteracts the negative effects of a gene fusion in chronic myelogenous leukemia; trastuzumab (Herceptin) treats breast cancers with amplifications of the gene coding for the human epidermal growth factor receptor 2 (HER2); and gefitinib (Iressa) and erlotinib (Tarceva) treat cases of lung cancer positive for mutations in the gene for epidermal growth factor receptor (EGFR).

Some researchers fear, however, that they have already picked the low-hanging fruit when it comes to identifying individual mutated genes that can serve as cancer ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH