© ISTOCK.COM/RAM CREATIV
Genetic mutations are a hallmark of cancer. Aided by advances in genomics and sequencing, researchers have therefore worked to identify mutations that drive cancer and to correct for them.
Determining the function of mutated “cancer genes” has led to notable successes in treatment. Imatinib (Gleevec) counteracts the negative effects of a gene fusion in chronic myelogenous leukemia; trastuzumab (Herceptin) treats breast cancers with amplifications of the gene coding for the human epidermal growth factor receptor 2 (HER2); and gefitinib (Iressa) and erlotinib (Tarceva) treat cases of lung cancer positive for mutations in the gene for epidermal growth factor receptor (EGFR).
Some researchers fear, however, that they have already picked the low-hanging fruit when it comes to identifying individual mutated genes that can serve as cancer ...