Q&A: A Molecular Toolkit to Build SARS-CoV-2 Research Capacity

Sam Wilson discusses a user-friendly set of resources that he and his collaborators developed to aid labs pivoting to study COVID-19.

asher jones
| 6 min read
COVID-19, SARS-CoV-2, pandemic, research, reverse genetics, toolkit, antibodies, RNA

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: Two of the study's authors, Sam Wilson and Suzanah Rihn
STUART CAMPBELL, PHOTOGRAPHIC UNIT, UNIVERSITY OF GLASGOW

When the COVID-19 pandemic hit in early 2020, Sam Wilson and his colleagues quickly realized that they lacked the fundamental tools to study the disease-causing virus, SARS-CoV-2. “That’s when we started to produce these research tools,” including antibodies and a system for modifying the virus, says Wilson, a molecular virologist at the MRC University of Glasgow Centre for Virus Research. At the same time, Wilson noticed many non-coronavirus labs were pivoting their research to focus on COVID-19. “We were producing reagents for ourselves, so it seemed sensible to produce them for the wider research community as well,” he says.

In a paper published February 25 in PLOS Biology, Wilson and his collaborators describe a molecular toolkit for SARS-CoV-2 research, including viral isolates, a reverse genetics system for genetically manipulating the virus, and a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • asher jones

    Asher Jones

    Asher is a former editorial intern at The Scientist. She completed a PhD in entomology from Penn State University, and she was a 2020 AAAS Mass Media Fellow at Voice of America. You can find more of her work here.

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits