Regenerative Cardiomyocytes Found

Specialized cardiac cells in the mouse heart appear to be the long-sought-after proliferative heart cells.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, MAKLUMAT IANJUTThe mammalian heart has a slight capacity for regeneration—about one percent of cardiac muscle cells turn over each year. Although such cells are of big interest to scientists developing cardiac therapies, their identity has remained mysterious. Researchers reported in Nature this week (June 22) that they have finally pinned down these proliferating cardiomyocytes in mice.

“For decades, researchers have been trying to find the specialized cells that make new muscle cells in the adult heart, and we think that we have found that cell,” Hesham Sadek, the senior author of the study and a researcher at UT Southwestern Medical Center, said in a press release. “This cell does not appear to be a stem cell, but rather a specialized cardiomyocyte, or heart muscle cell, that can divide, which the majority of cardiomyocytes cannot do.”

Previous studies suggested that the progenitor cells likely live in a hypoxic environment, so Sadek’s team developed a fate-mapping technique that could track the life of hypoxic cardiomyocytes and their daughter cells.

“We identify a rare population of hypoxic cardiomyocytes that display characteristics of proliferative neonatal ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo