Regeneron Cocktail Stumbles Against SARS-CoV-2 Variant in Vitro

A treatment of two monoclonal antibodies against SARS-CoV-2 is ninefold less effective in the lab against the B.1.351 variant than against the dominant version of the virus.

marcus a. banks
| 3 min read
regeneron monoclonal antibody sars-cov-2 covid-19 pandemic coronavirus neutralization b.1.351 variant south africa REGN10987 casirivimab and REGN10933 imdevimab

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, CIPHOTOS

A COVID-19 treatment from Regeneron Pharmaceuticals that consists of a pair of monoclonal antibodies sometimes fails to bind to antigens produced by the concerning B.1.351 variant of SARS-CoV-2, according to a preprint posted February 19 to bioRxiv.

In lab experiments, the researchers found that nine times fewer antibodies within the cocktail bind to B.1.351’s antigens than to antigens from the most common circulating version of the virus. This means that a treatment for B.1.351 would need to be nine times as large to yield the same level of viral neutralization.

“It certainly raises a concern,” says Nathaniel (Ned) Landau, a microbiologist at the New York University Grossman School of Medicine and the lead author of the study. “When the titer goes down ninefold, it could make it not work as well.” Given that his study was conducted in vitro, Landau notes that the only way to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • marcus a. banks

    Marcus A. Banks

    Marcus is a science and health journalist based in New York City. He graduated from the Science Health and Environmental Reporting Program at New York University in 2019, and earned a master’s in Library and Information Science from Dominican University in 2002. He’s written for Slate, Undark, Spectrum, and Cancer Today.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide