Regeneron Cocktail Stumbles Against SARS-CoV-2 Variant in Vitro

A treatment of two monoclonal antibodies against SARS-CoV-2 is ninefold less effective in the lab against the B.1.351 variant than against the dominant version of the virus.

Written byMarcus A. Banks
| 3 min read
regeneron monoclonal antibody sars-cov-2 covid-19 pandemic coronavirus neutralization b.1.351 variant south africa REGN10987 casirivimab and REGN10933 imdevimab

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, CIPHOTOS

A COVID-19 treatment from Regeneron Pharmaceuticals that consists of a pair of monoclonal antibodies sometimes fails to bind to antigens produced by the concerning B.1.351 variant of SARS-CoV-2, according to a preprint posted February 19 to bioRxiv.

In lab experiments, the researchers found that nine times fewer antibodies within the cocktail bind to B.1.351’s antigens than to antigens from the most common circulating version of the virus. This means that a treatment for B.1.351 would need to be nine times as large to yield the same level of viral neutralization.

“It certainly raises a concern,” says Nathaniel (Ned) Landau, a microbiologist at the New York University Grossman School of Medicine and the lead author of the study. “When the titer goes down ninefold, it could make it not work as well.” Given that his study was conducted in vitro, Landau notes that the only way to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • marcus a. banks

    Marcus is a science and health journalist based in New York City. He graduated from the Science Health and Environmental Reporting Program at New York University in 2019, and earned a master’s in Library and Information Science from Dominican University in 2002. He’s written for Slate, Undark, Spectrum, and Cancer Today.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery