Reprogramming Astrocytes: Unlocking DLX2’s Potential to Mend the Brain

Scientists discover how to convert the brain’s glial cells into multipotent neural stem cells.

Written byNele Haelterman, PhD
| 3 min read
A reprogrammed astrocyte that can regenerate functional neurons.
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

When neurons perish, the brain cannot replace them. Most organs maintain stem cells to repair damage, but the few neural progenitors that remain in the adult brain have very limited potential to grow into different cell types, so they are unable to regenerate functional brain tissue that is lost to injury or disease.

To coax the brain into healing itself, researchers have searched high and low for methods that expand the brain’s progenitor cell population. In one approach, scientists isolate cells from different tissue sources and turn them into neural progenitor cells in vitro. The hope is that once transplanted into injured brain regions, these cells will integrate, survive, and restore brain function. This in vitro reprogramming method has shown promise, but can have severe drawbacks, including immune rejection and cancer risks.1,2

When Chun-Li Zhang started his laboratory at the University of Texas Southwestern Medical Center, he wanted to decipher ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Nele Haelterman, PhD Headshot

    Nele earned her PhD in developmental biology from Baylor College of Medicine. During her graduate and postgraduate training, she developed gene editing technologies for characterizing human disease genes in flies and mice. Nele loves combining science communication and advocacy. She runs a blog for early career scientists and promotes open, reproducible science. In July 2021, Nele joined The Scientist’s Creative Services Team as an assistant science editor.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control