Research Teams Reach Different Results From Same Brain-Scan Data

When 70 independent teams were tasked with analyzing identical brain images, no two teams chose the same approach and their conclusions were highly variable.

Written byRuth Williams
| 4 min read
a cartoon of a human head with arrows going in different directions and speech bubble that say "yes!" and "no!"

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, FRANKRAMSPOTT

In a test of scientific reproducibility, multiple teams of neuroimaging experts from across the globe were asked to independently analyze and interpret the same functional magnetic resonance imaging dataset. The results of the test, published in Nature today (May 20), show that each team performed the analysis in a subtly different manner and that their conclusions varied as a result. While highlighting the cause of the irreproducibility—human methodological decisions—the paper also reveals ways to safeguard future studies against it.

“This is a landmark study that demonstrates clearly what many scientists suspected: the conclusions reached in neuroimaging analyses are highly susceptible to the choices that investigators make on how to analyze the data,” writes John Ioannidis, an epidemiologist at Stanford University, in an email to The Scientist. Ioannidis, a prominent advocate for improving scientific rigor and reproducibility, was not involved in the study (his own work has ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies