Reveling in the Revealed

A growing toolbox for surveying the activity of entire genomes

Written byKelly Rae Chi
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© HENNING DALHOFF/SCIENCE SOURCEA cell packs its genome as if our lives depended on it, and they do. If you could unwind the DNA within the nucleus of a single cell, it would stretch two meters. The 2–3 percent of the genome revealed at any one time performs an essential function: transcription. “Assaying the parts that are being used is a very powerful way to try to understand gene-expression regulation at the level of DNA,” says William Greenleaf of Stanford University. And probing that regulation process is key for understanding health and disease.

Large consortia-led projects such as ENCODE (Encyclopedia of DNA Elements) have made great strides in identifying various functional elements of the genome. These include enhancers, activators, and promoters—regions of DNA that bind proteins that control transcription. Studies have also have tapped into the nature of DNA’s primary packing material: protein spools called histones around which genomes wind to form nucleosomes. Nucleosomes, which are often compared to beads on a string of DNA, further stack as chromatin folds and winds, forming some 10,000 loops within the cell’s nucleus (Cell, 159:1665-80, 2014). This brings distant regions of the genome into close contact and ensures that genes aren’t unintentionally transcribed.

Which parts of the genome are available for transcription at a given moment? ENCODE helped answer this question ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Related Topics

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Graphic of amino acid chains folded into proteins

Expi293™ PRO Expression System: Higher Yields Across a Wider Variety of Proteins

Thermo Fisher Logo