RNA-Targeting CRISPR

Scientists identify a novel CRISPR system that zeroes in on single-stranded RNA.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, NIH IMAGE GALLERYMuch attention paid to the bacterial CRISPR/Cas9 system has focused on its uses as a gene-editing tool. But there are other CRISPR/Cas sytems. Researchers from MIT and the National Center for Biotechnology Information (NCBI) last year identified additional CRISPR proteins. One of these proteins, C2c2, seemed to be a putative RNA-cleaving—rather than a DNA-targeting—enzyme, the researchers reported at the time. Now, the same group has established that C2c2 indeed cleaves single-stranded RNA (ssRNA), providing the first example of a CRISPR/Cas system that exclusively targets RNA. The team’s latest results, published today (June 2) in Science, confirm the diversity of CRISPR systems and point to the possibility of precise in vivo RNA editing.

“This protein does what we expected, performing RNA-guided cleavage of cognate RNA with high specificity, and can be programmed to cleave any RNA at will,” study coauthor Eugene Koonin, of the NCBI and the National Library of Medicine, told The Scientist.

“I am very excited about the paper,” said Gene Yeo, an RNA researcher at the University of California, San Diego, who was not involved in the work. “The community was expecting to find native RNA CRISPR systems, so it’s great that one of these has now been characterized.”

The researchers originally identified C2c2 in Leptotrichia shahii in a systematic search for previously unidentified CRISPR systems within diverse bacterial genomes. For the present study, the team focused on C2c2, as its sequence contained two copies ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies