Scans of Sundry Variant Types Uncover Autism-Linked Genes

Troves of sequencing data reveal genes tied to autism through different variant types, providing a more complete picture of the condition’s genetic roots and new clues to its heterogeneity.

Written byChloe Williams and Spectrum
| 5 min read
Colorful DNA strands
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Two of the largest analyses of DNA sequences from people with autism have uncovered genes tied to the condition through a range of variant types. The work, published in two studies today in Nature Genetics, provides a more comprehensive picture of the condition’s genetic architecture and hints at how it may differ from that of other neurodevelopmental conditions.

Scientists typically hunt for de novo variants in sequences to spot autism-linked genes—an approach that has yielded roughly 100 genes. But alterations in these genes tend to have global effects on cognition and brain function, and people who carry them often represent only one portion of the autism spectrum.

“I think we’ve been biased in terms of the genes that we’ve identified,” says Wendy Chung, professor of pediatrics and medicine at Columbia University, who co-led one of the studies. To better understand the biology underlying brain function, behavior and autism, researchers have ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH