Schizophrenia’s Jumping Genetics

Researchers find evidence that transposable elements, also known as jumping genes, may contribute to the development of the psychiatric disorder.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

FLICKR, DANI LURIEGenetic sequences called transposable elements (TEs) that can jump from chromosome to chromosome, increasing their own frequency in the genome, may play a role in the development of schizophrenia, according to a study out of the RIKEN Brain Science Institute in Japan published last week (January 2) in Neuron.

Schizophrenia runs in families, suggesting it has an underlying genetic basis. Identifying genes with a strong role in the disorder’s development, however, has proven difficult. Environmental factors are also expected to contribute.

Recently, researchers revealed that human neural precursor cells are particularly rich in a common TE called L1. Additionally, they found that higher levels of L1 correlated with the occurrence of brain disorders, including Rett syndrome (a disorder related to autism) and the neurodegenerative disease Louis-Bar syndrome. Now, examining the brain tissue of deceased schizophrenia patients, Tadafumi Kato, Kazuya Iwamoto, and their RIKEN colleagues found a 1.1-fold increase in L1, as compared with healthy controls. Other mental disorders such as major depression were also associated with elevated L1.

Moreover, the team found that viral ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH