Scientists Bring Ancient Proteins Back to Life

Researchers are resurrecting proteins from millions of years ago to understand evolution and lay the groundwork for bioengineering custom molecules.

| 12 min read

modified from © istock.com/mustafahacalaki

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

Once upon a time, between 2 million and 4 million years ago, the fruit fly lineage split. One sister species, known today as Drosophila simulans, kept up the parent’s habit of hanging around and consuming ripe fruit. The other, the D. melanogaster beloved by modern geneticists, took a different path. It evolved a more active alcohol dehydrogenase (ADH) enzyme, making it better suited to slurp the high-ethanol content of perfectly rotten fruit.

It’s a nice story, one that evolutionary biologists touted for decades as an illustrative example of molecular adaptation. Too bad it’s wrong.

Last year, researchers at the University of Chicago refuted that just-so scenario by resurrecting the ancient ADH enzyme from the last common ancestor of D. simulans and D. melanogaster. They replaced a modern D. melanogaster’s ADH with the prehistoric version of the protein, from before flies colonized rotten fruit, and it made no difference to D. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amber Dance

    Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

Published In

Climate Change
July 2018

Climate Change

Which species are most vulnerable?

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio