Scientists Bring Ancient Proteins Back to Life

Researchers are resurrecting proteins from millions of years ago to understand evolution and lay the groundwork for bioengineering custom molecules.

| 12 min read
Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

Once upon a time, between 2 million and 4 million years ago, the fruit fly lineage split. One sister species, known today as Drosophila simulans, kept up the parent’s habit of hanging around and consuming ripe fruit. The other, the D. melanogaster beloved by modern geneticists, took a different path. It evolved a more active alcohol dehydrogenase (ADH) enzyme, making it better suited to slurp the high-ethanol content of perfectly rotten fruit.

It’s a nice story, one that evolutionary biologists touted for decades as an illustrative example of molecular adaptation. Too bad it’s wrong.

Last year, researchers at the University of Chicago refuted that just-so scenario by resurrecting the ancient ADH enzyme from the last common ancestor of D. simulans and D. melanogaster. They replaced a modern D. melanogaster’s ADH with the prehistoric version of the protein, from before flies colonized rotten fruit, and it made no difference to D. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amber Dance

    Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

Published In

Climate Change
July 2018

Climate Change

Which species are most vulnerable?

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo