Scientists Probe Blockers for the Coronavirus Spike Protein

SARS-CoV-2, the virus that causes COVID-19, taps into human proteases such as furin to enter cells. Temporarily inhibiting those enzymes might stymie infection.

Written byAnthony King
| 6 min read
furin spike protein sars-cov-2 covid-19 coronavirus pandemic

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: © ISTOCK.COM, DESIGN CELLS

The pandemic coronavirus SARS-CoV-2 must break into our cells to set up an infection. It gains entry using the now notorious spike protein but, typical of viruses, it must hijack our own biology to jimmy the lock. Scientists are figuring out ways to intercept the virus before it can break in.

Viral spike proteins rely on protein-chomping enzymes, proteases, to re-shape them for cellular entry. In the case of SARS-CoV-2, the spike must first be snipped at a specific point by the furin protease before it latches onto a cell’s ACE2 receptor. Then, another protease must cut the spike protein and initiate viral fusion with the cell membrane.

The idea that researchers are pursuing is to block furin from cutting the spike.

Early on, before COVID-19 was officially declared a pandemic, scientists were already on the furin case, observing that the spike protein had amino ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • anthony king

    Anthony King is a freelance science journalist based in Dublin, Ireland, who contributes to The Scientist. He reports on a variety of topics in chemical and biological sciences, as well as science policy and health. His articles have appeared in Nature, Science, Cell, Chemistry World, New Scientist, the Irish Times, EMBO Reports, Chemistry & Industry, and more. He is President of the Irish Science & Technology Journalists Association. 

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies