Scientists Successfully Transplant Human Leukemia Cells into Mice

While studying the progression of healthy cells into cancerous ones, researchers discover a way to engraft human blood cells into animals.

Written byDiana Kwon
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

TRANSFORMATIONS: An artistic representation of cancer progression in a cell, from normal to a leukemic state (from left to right)LEWIS LONG

The paper A.G. Kotini et al., “Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia,” Cell Stem Cell, 20:315-28.e7, 2017. Cancer continuum In recent years, cancer researchers have discovered that myeloid malignancies lie on a continuum of increasing severity, starting as precancerous mutations in blood cell precursors, then progressing to bone marrow disorders, and, finally, developing into acute myeloid leukemia. Transitions Eirini Papapetrou of the Icahn School of Medicine at Mount Sinai and colleagues followed disease progression by reprogramming cells from patients with various stages of myeloid malignancies, including premalignant cells, into pluripotent stem cells in their precancerous state. Then, by differentiating them back into blood cells, the team established cell lines representing specific stages of disease. “What we ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile

Published In

April 2017

Targeting Tumors

Precision aim to spare healthy cells

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems