Screen of 250,000 Species Reveals Tweaks to Genetic Code

A massive screen of bacterial and archaeal genomes revealed five previously unknown instances where an organism uses an alternate code to translate genetic blueprints into proteins.

Written byDan Robitzski
| 5 min read
Artist’s rendering of the protein synthesis process, in which a tRNA molecules carry amino acids to a ribosome that’s decoding a strand of mRNA.
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

The genetic code that dictates how genetic information is translated into specific proteins is less rigid than scientists have long assumed, according to research published today (November 9) in eLife. In the paper, scientists report screening the genomes of more than 250,000 species of bacteria and archaea and finding five organisms that rely on an alternate genetic code, signifying branches in evolutionary history that haven’t been fully explained.

The genetic code refers to how sequences of DNA nucleotide bases lead to specific chains of amino acids during the process of protein synthesis. To perform this synthesis, ribosomes read strands of mRNA—copies of bits of the organism’s genome—in chunks of three bases at a time. Each three-base sequence, known as a codon, binds to a specific transfer RNA (tRNA) that ferries a corresponding amino acid to the ribosome to the added to the protein chain. An organism with an alternate genetic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white image of young man in sunglasses with trees in background

    Dan is an award-winning journalist based in Los Angeles who joined The Scientist as a reporter and editor in 2021. Ironically, Dan’s undergraduate degree and brief career in neuroscience inspired him to write about research rather than conduct it, culminating in him earning a master’s degree in science journalism from New York University in 2017. In 2018, an Undark feature Dan and colleagues began at NYU on a questionable drug approval decision at the FDA won first place in the student category of the Association of Health Care Journalists' Awards for Excellence in Health Care Journalism. Now, Dan writes and edits stories on all aspects of the life sciences for the online news desk, and he oversees the “The Literature” and “Modus Operandi” sections of the monthly TS Digest and quarterly print magazine. Read more of his work at danrobitzski.com.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel