Self-Control Center in the Brain Linked to Weight Loss

Activity in the lateral prefrontal cortex was the best correlate of weight loss in a study of people on a restricted-calorie diet.

Written byAshley P. Taylor
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM, ALEX-MIT

The activity in a cortical area involved in self-regulation was the best correlate of weight loss in a study published today (October 18) in Cell Metabolism.

Previously, scientists thought that challenges to losing weight stemmed from imbalances between the hormones leptin, which produces a feeling of satiety, and ghrelin, which stimulates hunger. When people go on a diet, ghrelin levels go up and leptin levels go down.

To see how brain activity fits into dieting physiology, Alain Dagher, a neurologist at McGill University, worked with 24 overweight and obese people who were starting a 1,200-calories-per-day diet at a weight-loss clinic. Before starting the regimen, participants had fMRIs—imaging scans that show brain activity—while looking at pictures of either appetizing, sometimes high-calorie food, or of scenery. The researchers repeated the scans one month and three months into the diet.

Typically, food pictures activate the ventral medial prefrontal cortex, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH