Self-Editing Genetic Barcodes

Scientists create a CRISPR-based, self-editing cellular–barcoding system for extensive molecular recording.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, NHGRIBy tweaking the CRISPR-Cas9 gene-editing machinery such that it mutates its own guide RNA loci, researchers have developed a method for cells to continuously generate their own unique barcodes. The technique, developed independently by two groups at MIT and Harvard, has been utilized in mammalian cells for molecular recording—as described this summer (August 18) in Science—and for lineage tracing, according to a paper published last week (December 5) in Nature Methods.

“It is a really cool technique . . . in the sense that you get one site that can generate a very diverse editing pattern and can start encoding more and more information,” said Aaron McKenna of the University of Washington who was not involved in either study.

Neuroscientist Edward Boyden of MIT who also did not participate in the studies agreed. “This is very exciting work, since it could help label different cells in an organism . . . so they are easy to distinguish.”

The use of the CRISPR-Cas9 gene-editing system to insert information about a cell into its own genome—be that information about the cell’s identity (a barcode), or the cell’s exposure to signaling molecules or other factors—is a growing area of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo