Mouse Stem Cells Made to Form Embryo-Like Structures

With just a molecular nudge, aggregates of embryonic stem cells take shape as a “gastroloid,” bearing the genetic hallmarks and spatial organization of early development.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: A five-day-old gastruloid
DAVID TURNER

Clumps of embryonic stem cells given one brief molecular stimulation start arranging themselves in a way that resembles a mouse embryo, down to the timing of when the cells switch on particular developmental genes, according to a report in Nature today (October 3). The reproducible formation of these so-called gastruloids could make them a potentially valuable resource for research and reduce the number of animals used in experimentation.

“This is a fascinating study,” developmental biologist James Briscoe of the Frances Crick Institute in the UK writes in an email to The Scientist. “The ability of ES [embryonic stem] cells, when properly shepherded, to specify all three major body axes is striking and is yet another example of the surprising ability of developing tissues to self-organize.”

ES cells are derived from a group of cells within the early mammalian embryo called the inner cell mass. During ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit

BIOVECTRA

BIOVECTRA is Honored with 2025 CDMO Leadership Award for Biologics

Sino Logo

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo