Sourcing Painkillers from Scorpions’ Stings

Compounds in the arachnids’ venom interact with ion channels to both cause and block pain.

Written byAbby Olena, PhD
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

MATTHEW P. ROWEStudying scorpions comes with its share of danger, as biologist Bryan Fry of the University of Queensland knows all too well. On a 2009 trip to the Brazilian Amazon, Fry was stung while trying to collect the lethal Brazilian yellow scorpion (Tityus serrulatus), and for eight hours he says it felt as though his finger was in a candle flame. Meanwhile, his heart flipped between racing and stopping for up to five seconds at a time. “At least the insane levels of pain helped keep my mind off my failing heart,” Fry writes in an email to The Scientist.

His symptoms were caused by an arsenal of toxins in the animal’s sting, which contribute to one of the most painful attacks in the animal kingdom. But at least one mammal—the southern grasshopper mouse (Onychomys torridus)—regularly chows down on Arizona bark scorpions (Centruroides sculpturatus) and doesn’t seem to experience pain, despite receiving plenty of stings. In 2013, Ashlee Rowe, now of Michigan State University, and colleagues showed that bark scorpion venom interacts with the NaV1.8 voltage-gated sodium channel in grasshopper mice, in addition to activating the NaV1.7 channel as it does in other mammals (Science, 342:441-46).

Rowe’s team showed that grasshopper mice have evolved amino acid changes in NaV1.8 that allow it to bind scorpion venom components, and in turn prevent the channel’s activation. Because ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile

Published In

January 2018

The Science of Pain

New research on an age-old ailment

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies