SPRead Your Antibody Capabilities

Using surface plasmon resonance to improve antibody detection and characterization: four case studies

Written byCarina Storrs
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

SNAGGING PEPTIDES: Bianca Loveless and Matt Pope from Terry Pearson’s lab discuss a an experiment using a Biacore instrument. TERRY PEARSON

When researchers talk about antibodies, one of the first things they want to know is how well an antibody binds to its target—in other words, how specific it is. In a survey of antibodies use in the lab, conducted by business research firm Frost and Sullivan for The Scientist, 84 percent of respondents said that measuring antibody specificity was very important to their research.

For the characterization of antibody specificity, label-free detection systems using surface plasmon resonance (SPR) are king. Unlike ELISA or fluorescence-based techniques, these systems can measure the binding and dissociation of antibody and antigen—as well as other binding partners, such as DNA and lipids—in real time. As a result, one can study antibody interactions with very rapid on- and off-rates, and thus ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH