Stem Cell–Derived Neurons from People with Autism Grow Differently

Changes in gene expression also hint at how the brains of people with ASD develop differently from those of other people.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Neurons derived from the skin cells of people with and without autism spectrum disorder exhibit different patterns of growth and development, according to a study published this week (January 7) in Nature Neuroscience.

“Although our work only examined cells in cultures, it may help us understand how early changes in gene expression could lead to altered brain development in individuals with ASD [autism spectrum disorder],” coauthor Rusty Gage, president of the Salk Institute, says in a press release. “We hope that this work will open up new ways to study neuropsychiatric and neurodevelopmental disorders.”

Gage and his colleagues converted skin cells from eight people with ASD and five developmentally typical controls into induced pluripotent stem cells, then re-differentiated those cells into neurons. During that re-differentiation process, the researchers noticed differences between the two groups. For example, neurons derived from people with ASD grew faster and developed longer and more-complex branches ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb