Streamlined Artificial Chromosome Creation

Recruiting an epigenetic instigator of centromere formation into large segments of cloned DNA facilitates their transformation into artificial chromosomes.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, koto_feja

Artificial chromosomes are essentially miniature versions of real chromosomes that can replicate alongside their natural counterparts in host cells. They have the potential to be “incredibly useful for genome engineering, especially in cases where you want to put in a very large piece of DNA that, let’s say, [encodes] a whole cascade of enzymes involved in a particular pathway,” says chromatin researcher Gary Karpen of Lawrence Berkeley National Laboratory. However, this potential isn’t always realized because there’s a stubborn hurdle hindering artificial chromosome construction: creating centromeres.

Like natural chromosomes, artificial ones need centromeres to attach to mitotic spindles and separate sister chromatids during cell divisions. Centromeres are defined by the presence of a specialized histone called CENP-A that’s critical for connecting to spindles. But how CENP-A is initially recruited is not entirely clear. Centromeres tend to be buried deep in a jungle of repetitive DNA, known ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.

Published In

November 2019

Oceanic Connections

Biologists consider the movements of marine animals

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo
Sapio Sciences logo

Sapio Sciences Introduces Biorepository Management Solution