Study: Gene Drive Wipes Out Lab Mosquitoes

No females were produced after eight generations, causing the population to collapse.

Written byAshley Yeager
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: Anopheles gambiae mosquito
WIKIMEDIA
, CDC/JAMES GATHANY

A gene drive has successfully caused the collapse of a malaria-carrying mosquito population in the lab, researches report today (September 24) in Nature Biotechnology. This is the first time a gene drive—a genetic element that ensures its own inheritance—has caused a population of mosquitoes to self-destruct, a result that holds promise for combating malaria.

“This breakthrough shows that gene drive can work, providing hope in the fight against a disease that has plagued mankind for centuries,” study coauthor Andrea Crisanti, a molecular parasitologist at Imperial College London, says in a university statement.

In the study, the team targeted a region of a gene called doublesex that is responsible for female development. Female Anopheles gambiae mosquitoes with two copies of the altered doublesex gene did not lay eggs. After eight generations, the drive had spread through the entire population, such that no eggs were ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies