Study: Gene Drive Wipes Out Lab Mosquitoes

No females were produced after eight generations, causing the population to collapse.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: Anopheles gambiae mosquito
WIKIMEDIA
, CDC/JAMES GATHANY

A gene drive has successfully caused the collapse of a malaria-carrying mosquito population in the lab, researches report today (September 24) in Nature Biotechnology. This is the first time a gene drive—a genetic element that ensures its own inheritance—has caused a population of mosquitoes to self-destruct, a result that holds promise for combating malaria.

“This breakthrough shows that gene drive can work, providing hope in the fight against a disease that has plagued mankind for centuries,” study coauthor Andrea Crisanti, a molecular parasitologist at Imperial College London, says in a university statement.

In the study, the team targeted a region of a gene called doublesex that is responsible for female development. Female Anopheles gambiae mosquitoes with two copies of the altered doublesex gene did not lay eggs. After eight generations, the drive had spread through the entire population, such that no eggs were ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley Yeager

    Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours