Synthetic Bacteria Help Treat Phenylketonuria in Mice

The genetically engineered probiotic, already in clinical trials, may ease patients’ strict dietary regimes.

Written byDiana Kwon
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

People with phenylketonuria have to stick to strict diets to prevent the toxic buildup of phenylalanine, a key constituent of proteins, which otherwise can lead to severe neurological and cognitive impairments.

Researchers at Synlogic, a Massachusetts-based biotech, now report that a bacterium genetically modified to remove phenylalanine (Phe) from the blood shows promise in preclinical trials. The study, published this week (August 13) in Nature Biotechnology, reveals that the probiotic can significantly lower Phe levels in both mouse models of phenylketonuria (PKU) and in healthy monkeys.

The treatment, dubbed SYNB1618, is a reprogrammed version of a widely used probiotic, Escherichia coli Nissle. In rodent models of PKU, SYNB1618 taken orally after an injection of Phe decreased the levels of the amino acid by 38 percent compared to untreated animals.

The US Food and Drug Administration (FDA) awarded Synlogic a fast-track designation for SYNB1618 this April, and researchers are currently testing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA