FLICKR, NATIONAL HUMAN GENOME RESEARCH INSTITUTEDemonstrating yet another basic research application of CRISPR, two teams have independently reported scaled up CRISPR interference (CRISPRi) and CRISPR/Cas9 noncoding genomic screens.
Researchers at MIT and the Broad Institute of MIT and Harvard used a large single guide RNA (sgRNA) library to identify noncoding elements that affect the regulation of genes that confer cancer drug resistance. Their work is published today (September 29) in Science. In a separate study also published today in Science, another team—from MIT, Harvard, and the Broad—used a high-throughput CRISPRi screen to find noncoding regulatory elements within a 1 megabase distance of two disease-related genes.
While researchers have previously used the CRISPR/Cas9 system to directly validate previously identified noncoding genomic elements in vivo, the current studies describe larger screens and identify novel noncoding sites.
“[Both CRISPR screens] target what has been very difficult to do thus far—noncoding regions of the human genome in ...