The Footprints of Winter

Epigenetic marks laid down during the cold months of the year allow flowering in spring and summer.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Iain Sarjeant / ISTOCKIPHOTO.COM

Many plants that grow in climates with a cold winter require growth for several months at low temperatures—a process called vernalization—to promote flowering in spring, when days lengthen and temperatures increase. Without this period of cold, plants would grow leaves in the spring, but would fail to flower. This phenomenon, familiar to every horticulturist, was difficult to explain with genetics alone; something occurred during those cold months that left a mark, which, in effect, released a switch that permitted flowering in spring. In recent years, the field has looked beyond the genome and found that vernalization is controlled by a wide range of epigenetic mechanisms.

Researchers studying the genetics of flowering found that the flowering switch was controlled by two central players—the genes FLOWERING LOCUS ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ralf Müller

    This person does not yet have a bio.
  • Justin Goodrich

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo
Sapio Sciences logo

Sapio Sciences Introduces Biorepository Management Solution