Toggling Between Life and Death

In estrogen receptor–positive breast cancer, the transcription factor IRF1 tips the balance between cellular suicide and survival through autophagy.

Written byAshley P. Taylor
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

LIVE OR DIE: In breast cancer cells expressing estrogen receptor-α (ER-α), the inhibition of the autophagy gene ATG7 (top panel) allows an apoptosis transcription factor, IRF1, to lead the cancer cell to die upon antiestrogen therapy, which outcompetes estrogen for binding the receptor. When IRF1 is knocked down (lower panel), antiestrogens are less potent as the activity of ATG7 and another autophagy factor, BECN1, aids in cell survival by supporting autophagy.© EVAN OTO/SCIENCE SOURCE

The paper
J.L. Schwartz-Roberts et al., “Interferon regulatory factor-1 signaling regulates the switch between autophagy and apoptosis to determine breast cancer cell fate,” Cancer Res, 75:783-91, 2015.

About 70 percent of breast cancers express estrogen receptor-α (ER-α). In these cancers, the receptor binds estrogen then translocates to the nucleus, where it upregulates genes leading to cancer growth. Antiestrogen drugs, which compete with endogenous estrogen, can prevent this from happening. When they work, antiestrogen therapies lead breast cancer cells to undergo apoptosis, often through a signaling pathway involving the transcription factor interferon regulatory factor-1 (IRF1). Unfortunately, most breast cancers eventually become resistant to such drugs.

Previous studies showed that IRF1 was downregulated in antiestrogen-resistant breast cancer cell lines, suggesting that it was the loss of IRF1’s ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies