Toward a Virus-Free Polio Vaccine

Researchers are developing polio vaccines based on the viral capsid alone. When produced in recombinant systems, these could eliminate the need to propagate live poliovirus for vaccine production.

Written byAshley P. Taylor
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, GRAHAM BEARDSPolio is nearly eradicated. But vaccine campaigns will continue in case, for example, some remaining infections go undetected. With the current technology, the need to continue vaccinations poses a challenge to a poliovirus-free world because “the only way you can make [vaccines] at the moment is using a live virus,” virologist Andrew Macadam at the U.K.’s National Institute for Biological Standards and Control, told The Scientist. The oral polio vaccine (OPV) contains live, attenuated virus; the inactivated polio vaccine (IPV) is made by growing, then killing, virulent virus. Both of these vaccines could cause outbreaks, through reversion of OPV to a virulent form or through leakage of live virus from an IPV production plant, Macadam explained.

To circumvent these problems, Macadam and colleagues are working to develop new vaccines that contain no virus at all. These consist of empty viral capsids, the viruses’ protein coats, called virus-like particles (VLPs). In a study published today (January 19) in PLOS Pathogens, the team reported having created capsid-based vaccines that are stable and, in rodent experiments, worked as well as IPVs in protecting against polio.

The study “opens up the possibility of not having to use virus to produce a virus-like particle which is noninfectious” said Olen Kew, the national poliovirus containment coordinator at the US Centers for Disease Control and Prevention, who was not involved in the research. “The facilities which handle by far the largest amounts of poliovirus are the vaccine producers,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH