Toward Killing Cancer with Bacteria

Researchers employ an engineered microbe to destroy tumor cells in mice.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, VOLKER BRINKMANNA genetically manipulated version of the gastroenteritis-causing bacteria Salmonella typhimurium is a potent destroyer of mouse tumors, according to a report published today (February 8) in Science Translational Medicine. The paper adds to a growing body of research investigating bacterial cancer treatments, and reveals an immunological mechanism that contributes to bacteria-driven, cancer–killing activity.

“I am super excited about applications for microbiota to eliminate cancer,” MIT’s Susan Erdman, who was not involved in the work, wrote in an email to The Scientist. “This work is part of a promising frontier in using bacteria or their products to stimulate beneficial host immune responses to inhibit and suppress cancer development and growth.”

The oxygen-starved and necrotic cores of tumors are attractive environments for anaerobic bacteria such as Salmonella, Clostridium, and Listeria, and an infection can lead to tumor colonization by these bugs. As the bacteria busily multiply, they can directly kill the cancer cells, but also attract the attention of the body’s immune system (which is generally suppressed within tumors), leading to further tumor destruction.

While this is the reasoning behind ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome