Toward Treating Alzheimer’s Disease with Brain Waves

In a mouse model, researchers mitigated three Alzheimer’s disease–associated symptoms by stimulating gamma waves with light.

Written byAshley P. Taylor
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

PICOWER INSTITUTE FOR LEARNING AND MEMORYWhen brain cells fire rhythmically and in sync, they produce waves, which are categorized by their firing frequencies. Delta waves (1.5 Hz to 4 Hz), for example, are produced during deep sleep, theta waves (4 Hz to 12 Hz) occur during running and deep meditation, and gamma waves (25 Hz to 100 Hz) are associated with excitement and concentration. Disruption of gamma waves could be a key contributor to Alzheimer’s disease pathology, according to a mouse study published today (December 7) in Nature. And the restoration of these waves, researchers propose, may one day be an option for Alzheimer’s disease treatment.

MIT’s Li-Huei Tsai, Ed Boyden, and their colleagues have shown that stimulating neurons to produce gamma waves at a frequency of 40 Hz reduces the occurrence and severity of several Alzheimer’s-associated symptoms in a mouse model of the disease. The researchers induced slow gamma waves using optogenetics, and by exposing the mice to flickering light—an approach they suggest could translate to human therapies.

“It’s a pretty striking result that at one particular frequency with which they entrained the brain . . . they were able to reduce, in the mouse at least, all three hallmarks of Alzheimer’s pathology,” said Rudolph Tanzi, who leads genetics and aging research at Massachusetts General Hospital and was not involved in the work.

Stimulation of gamma waves reduced levels of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies