© GEORGE RETSECK
The study of human hearing—how it develops, functions, and can diminish with age or disease—would be a great deal easier if only the hair cells of the ear weren’t so difficult to get at. These mechanosenory cells, which convert sound-wave vibrations into electrical signals for the auditory nerves, are buried deep within the organ of Corti in the cochlea and are largely inaccessible when it comes to transfecting genes for functional studies, even when the tissue is cultured.
Indeed, with the exception of laborious viral vector–based delivery, standard transfection approaches “just don’t work,” says hearing researcher Tony Ricci of Stanford University. But now, Ulrich Müller and his team from the Scripps Research Institute have found that by dissecting out the cochlear duct, injecting the genetic ...