Tricky Transfections

A combination of microinjection and electroporation inserts genes into hard-to-reach cells.

ruth williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

© GEORGE RETSECK

The study of human hearing—how it develops, functions, and can diminish with age or disease—would be a great deal easier if only the hair cells of the ear weren’t so difficult to get at. These mechanosenory cells, which convert sound-wave vibrations into electrical signals for the auditory nerves, are buried deep within the organ of Corti in the cochlea and are largely inaccessible when it comes to transfecting genes for functional studies, even when the tissue is cultured.

Indeed, with the exception of laborious viral vector–based delivery, standard transfection approaches “just don’t work,” says hearing researcher Tony Ricci of Stanford University. But now, Ulrich Müller and his team from the Scripps Research Institute have found that by dissecting out the cochlear duct, injecting the genetic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours