Turning T-cells into Cancer Killers

Repurposing patient’s own T-cells to recognize antigens on cancer cells caused dramatic improvement in three patients with chronic lymphocytic leukemia.

Written byTia Ghose
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Chronic Lymphocytic LeukemiaWIKIMEDIA COMMONS, ED UTHMAN

Researchers have kept cancer at bay in three patients with chronic lymphocytic leukemia by genetically engineering the patients’ own T-cells to recognize leukemia cell antigens, then kill the cancer cells. The approach, which is described today (August 9) in two papers in the New England Journal of Medicine and Science Translational Medicine, could potentially be developed to fight not just leukemia, but other cancers as well.

“This is the touchdown that I think the field’s been looking for,” said Donald Kohn, a pediatric gene therapist at the University of California, Los Angeles, who was not involved in the research. “It’s a really spectacular clinical response to have patients with unresponsive, end-stage disease have complete remission without a lot of toxicity.”

Chronic lymphocytic leukemia (CLL) is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH