US Pesticide Use Is Down, but Damage to Pollinators Is Rising

The use of pesticides has decreased in the US by more than 40 percent since 1992, but the emergence of more-potent chemicals means that they are far more damaging to many species.

amanda heidt
| 3 min read
nutshell, pollinators, pesticides, agriculture, crop pest, ecology & environment, insect, toxin, chemical, mammal, bird, fish, plants

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, DB_BEYER

Pesticide usage in the US has declined by more than 40 percent over the last three decades, and some organisms, including mammals and birds, have benefitted from the reduction in pesticide usage and improvements in product design, according to a study published April 2 in Science. But an increase in pesticide potency has come at the expense of other species’ health.

“Compounds that are particularly toxic to vertebrates have been replaced by compounds with less vertebrate toxicity, and that is indeed a success,” coauthor Ralf Schulz, an ecotoxicologist at the University Koblenz and Landau in Germany, tells The Guardian. “But at the same time, pesticides became more specific, and therefore, unfortunately, also more toxic to ‘non-target organisms’, like pollinators and aquatic invertebrates.”

Schulz and his team combined self-reported US Geological Survey data on farmers’ use of 381 pesticides between 1992 and 2016 with data from the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • amanda heidt

    Amanda Heidt

    Amanda was an associate editor at The Scientist, where she oversaw the Scientist to Watch, Foundations, and Short Lit columns. When not editing, she produced original reporting for the magazine and website. Amanda has a master's in marine science from Moss Landing Marine Laboratories and a master's in science communication from UC Santa Cruz.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide