Week in Review: June 9–13

Ancient apoptotic pathway connects humans to coral; lab-grown, light-sensing retinal tissue; tracking cancer with synthetic phospholipids; diving deep into the lung microbiome

Written byTracy Vence
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, PAUL ASMAN AND JILL LENOBLEProteome data for the coral Acropora digitifera suggest that the species have more TNF receptor-ligand superfamily (TNFSF) members—central mediators of the death receptor pathway—than “any organism described thus far, including humans,” a team led by investigators at San Diego State University (SDSU) wrote in PNAS this week (June 9). When the researchers exposed corals to a human TNFSF called HuTNFα, the protein caused apoptotic blebbing and cell death, inducing bleaching. Similarly, the researchers found, exposure of immortalized human T cells to a coral TNFSF member, AdTNF1, resulted in more cell death. The SDSU-led team concluded that coral and humans have likely shared this TNF-induced apoptotic response pathway for more than 500 million years.

“Corals are actually much more similar to humans than we ever thought,” Steven Quistad, lead author on the study, told The Scientist.

X. ZHONG. C. GUTIERREZ AND M.V. CANTO-SOLERIn a significant step toward regenerating functional retinal tissue for therapeutic applications, scientists from Johns Hopkins University have grown in culture retinal tissue, complete with functional photoreceptor cells, from human induced pluripotent stem cells (iPSCs). Their work was published in Nature Communications this week (June 10).

“The major advance here is the ability to make retinal cells that can respond to light and that form into what appears to be remarkably proper orientation,” said Bruce Conklin, a senior investigator with the Gladstone Institute of Cardiovascular Disease at the University of California, San Francisco, who was not involved with the study.

“This is a beautifully performed set of experiments to show that human iPSCs are capable of forming retinal cells that follow the expected developmental ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH