Week in Review: June 9–13

Ancient apoptotic pathway connects humans to coral; lab-grown, light-sensing retinal tissue; tracking cancer with synthetic phospholipids; diving deep into the lung microbiome

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, PAUL ASMAN AND JILL LENOBLEProteome data for the coral Acropora digitifera suggest that the species have more TNF receptor-ligand superfamily (TNFSF) members—central mediators of the death receptor pathway—than “any organism described thus far, including humans,” a team led by investigators at San Diego State University (SDSU) wrote in PNAS this week (June 9). When the researchers exposed corals to a human TNFSF called HuTNFα, the protein caused apoptotic blebbing and cell death, inducing bleaching. Similarly, the researchers found, exposure of immortalized human T cells to a coral TNFSF member, AdTNF1, resulted in more cell death. The SDSU-led team concluded that coral and humans have likely shared this TNF-induced apoptotic response pathway for more than 500 million years.

“Corals are actually much more similar to humans than we ever thought,” Steven Quistad, lead author on the study, told The Scientist.

X. ZHONG. C. GUTIERREZ AND M.V. CANTO-SOLERIn a significant step toward regenerating functional retinal tissue for therapeutic applications, scientists from Johns Hopkins University have grown in culture retinal tissue, complete with functional photoreceptor cells, from human induced pluripotent stem cells (iPSCs). Their work was published in Nature Communications this week (June 10).

“The major advance here is the ability to make retinal cells that can respond to light and that form into what appears to be remarkably proper orientation,” said Bruce Conklin, a senior investigator with the Gladstone Institute of Cardiovascular Disease at the University of California, San Francisco, who was not involved with the study.

“This is a beautifully performed set of experiments to show that human iPSCs are capable of forming retinal cells that follow the expected developmental ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer