Zika and Dengue Immunity: A Complex Relationship

Researchers examine the blood of people infected with dengue virus, finding a few Zika-neutralizing antibodies among mostly enhancing ones.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Transmission electron microscope image of negative-stained, Fortaleza-strain Zika virus (red)FLICKR, NIAIDDengue researchers around the world have been cracking open their freezers in search of serum or antibodies that might neutralize the related flavivirus, Zika. Three groups described such antibodies in the past week. In a paper published yesterday (June 27) in the PNAS, researchers from the Emory University School of Medicine in Atlanta and their colleagues described serum and monoclonal antibodies from nine patients in Thailand, where dengue is endemic. Most of the patients’ sera and some of their monoclonal antibodies were able to neutralize Zika virus in vitro, the researchers reported. But the same sera and antibodies also enhanced Zika’s ability to infect human cells in vitro.

“It’s well known in the flavivirus field that antibodies that don’t neutralize cause enhancement,” said Michael Diamond, who studies mosquito-borne pathogens at the Washington University in St. Louis and was not involved in the work. Antibody-dependent enhancement (ADE) occurs through Fc receptors, which bind the back ends of antibodies. Fc receptors are found on several cell types, including macrophages and placental epithelial cells. They internalize antibodies and may also internalize partially neutralized viral particles bound by those antibodies. This often happens in cases of secondary dengue infection, since each of the four dengue serotypes differ enough from one another that antibodies to one serotype can be poor neutralizers of another. Even sub-neutralizing concentrations of otherwise neutralizing antibodies can lead to ADE.

Because placental Fc receptors ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amanda B. Keener

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo