Africa Contributes SARS-CoV-2 Sequencing to COVID-19 Tracking

In recent years, laboratories on the continent have ramped up genomic sequencing capabilities, offering in-country analyses rather than outsourcing the job.

munya makoni
| 4 min read
coronavirus covid-19 sars-cov-2 genome sequencing africa nigeria

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, GILNATURE

Three days after the confirmation of Nigeria’s first COVID-19 case, the genome sequencing results of the SARS-CoV-2 specimen were announced on March 1. The sputum samples, taken from an Italian consultant who entered Nigeria through Lagos on February 27 before traveling to the neighboring Ogun State, were analyzed at the African Center of Excellence for Genomics of Infectious Diseases (ACEGID) at Redeemer University. They became the first analysis of SARS-CoV-2 in Africa, signaling the continent’s contribution to the growing global body of evidence to understand the virus’s behavior outside China.

“We have moved from being spectators to contributors and players in the field of infectious disease genomics,” Christian Happi, ACEGID director in Ede, Nigeria, who led the sequencing effort, tells The Scientist.

Whether the tool is used for disease outbreaks or routine surveillance, we now have the capacity to perform in-country sequencing, which has traditionally been ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • munya makoni

    Munyaradzi Makoni

    Munyaradzi is a freelance journalist based in Cape Town, South Africa. He covers agriculture, climate change, environment, health, higher education, sustainable development, and science in general. Among other outlets, his work has appeared in Hakai magazine, Nature, Physics World, Science, SciDev.net, The Lancet, The Scientist, Thomson Reuters Foundation, and University World News.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio