As Disease Batters Florida Reefs, Scientists and Community Fight Back

Stony coral tissue loss disease has already affected 80 percent of Florida’s coastal reef system. Now, a huge team of responders is working to slow its spread and prepare for future restoration efforts.

Written byCarolyn Wilke
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: A reef off the coast of Florida that suffers from stony coral tissue loss disease
CONOR GOULDING, MOTE MARINE LABORATORY

A brutal disease is ravaging Florida’s reefs. Stony coral tissue loss disease first cropped up in 2014 in the shallow waters near Miami, before spreading north along the coast as well as south and west into the Keys. Roughly 80 percent of Florida Reef Tract, a system similar to a barrier reef, is now affected. In response, scientists studying the disease are teaming up with institutions and the public in a massive coordinated effort to stem the spread of stony coral tissue loss disease and look ahead to someday restoring the reefs that have already been damaged.

As its name implies, the disease causes the coral’s colorful tissue to slough off a colony, exposing its bright white skeleton, says Erinn Muller, a coral reef ecologist at Mote Marine Laboratory. This ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH