Astrocyte-to-Neuron Method Reverses Neurodegeneration in Mice

The cell conversion strategy restores neurons and motor functions lost as a result of an induced Parkinson’s-like illness in the animals.

Written byRuth Williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Mouse neurons derived from astrocytes
HAO QIAN

Turning off just one factor in the brain’s astrocyte cells is sufficient to convert them into neurons in live mice, according to a paper published in Nature today (June 24) and one this spring by another research team in Cell. By flipping this cellular identity switch, researchers have, to some extent, been able to reverse the neuron loss and motor deficits caused by a Parkinson’s-like illness. Not everyone is entirely convinced by the claims.

“I think this is very exciting work,” says Pennsylvania State University’s Gong Chen of the Nature paper. It reaffirms that “using the brain’s internal glial cells to regenerate new neurons is a really new avenue for the treatment of brain disorders,” he continues. Chen, who is also based at Jinan University and is the chief scientific officer for NeuExcell—a company developing astrocyte-to-neuron conversion therapies—has performed such conversions in the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA