Bacterial Protein Acts as Prion in Yeast and E. coli

Clostridium botulinum produces a transcription factor that can aggregate and self-propagate a prion-like form, leading to genome-wide changes in gene expression in E. coli, according to a study.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Computer-generated image of anaerobic, spore-forming, Clostridium bacteriaCDC, JAMES ARCHERResearchers at Harvard Medical School used software to run through roughly 60,000 bacterial genomes in search of proteins that, in yeast, would be predicted to behave as prions—that is, become misfolded in a way that passes on the errant structure to like proteins. In doing so, they identified a version of the global regulator Rho encoded in the genome of Clostridium botulinum, the causative agent of botulism. When they injected Cb­-Rho into E. coli to examine the protein’s function, they found that the protein misfolded in a prion-like manner, rendering it nonfunctional and allowing genes normally suppressed by Rho to be expressed.

The study, published last week (January 13) in Science, is the first to identify a prion-like protein in bacteria, suggesting that the emergence of prions predates the evolutionary split between eukaryotes and bacteria,” the authors, from Harvard Medical School, wrote.

Bacterial proteins capable of acting like prions could help the microbes to adapt to environmental changes. One of the genes liberated from Rho suppression, for example, allowed E. coli to better adapt to ethanol exposure. Because prions pass on their misfolded shape to like proteins, they may allow bacteria evolve without genomic changes. “Bacteria might need quick responses to their environment, such as dealing with antibiotics,” Peter Chien, a bacterial biochemist at the University of Massachusetts Amherst, who was not involved in the research, told ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Discover a serum-free way to produce dendritic cells and macrophages for cell therapy applications.

Optimizing In Vitro Production of Monocyte-Derived Dendritic Cells and Macrophages

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with Lipid Nanoparticles

Thermo Fisher Logo