Birth of the Skin Microbiome

The immune system tolerates the colonization of commensal bacteria on the skin with the aid of regulatory T cells during the first few weeks of life, a mouse study shows.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Fluorescent Staphylococcus epidermidis (red) on the skin (stratum corneum in green, epidermis in blue). UCSF, TIFFANY SCHARSCHIMDTThe skin is home to millions of commensal bacteria and immune cells. Yet how the skin microbiome is established—in particular, why the immune system does not attack these bacteria—has been little studied. Now, a team led by researchers at the University of California, San Francisco (UCSF), has shown that, to establish tolerance by the immune system, colonization of the skin by commensal bacteria occurs during the first few days after birth in mice. The team’s findings were published today (November 17) in Immunity.

“This is an elegant and well-executed study showing a regulatory T cell–mediated establishment of commensal-specific tolerance,” said Keisuke “Chris” Nagao of the National Cancer Institute in Bethesda, Maryland, who was not involved in the work.

“There is a fair amount known about how the innate immune system responds to the skin’s microbiome, but very little about the adaptive immune response to microbes in the skin,” said study coauthor Michael Rosenblum, a dermatologist and immunologist at UCSF.

One reason is the challenge of genetically manipulating bacterial species native to the skin. In the current study, Rosenblum, along with Tiffany Scharschmidt, an assistant professor of dermatology at UCSF, and their colleagues were able to overcome this hurdle, creating one of the first genetically engineered commensal skin microbes. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH