Cancer Cells Break Own DNA to Defend Against Radiation

Self-inflicted DNA breaks let the cells hit pause on repair of radiation-induced DNA damage, giving them time to recover, an in vitro study shows.

Written bySophie Fessl, PhD
| 3 min read
line illustration of DNA with single-strand break
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Radiation inflicts extensive damage on cells’ DNA. For many cells, the damage is too complex to repair, and the cells die–making radiotherapy a frontline cancer treatment. However, some tumor cells are resistant to radiation: They repair the inflicted damage and survive. New research, published today in Science, finds that tumor cells buy themselves time for these repairs by self-inflicting smaller, easier-to-repair damage to their DNA, widening the window in which they can repair the more extensive radiation-inflicted damage.

The study “presents an intriguing and essentially unanticipated finding that tumor cells have the capacity to promote a ‘secondary wave of strand breaks’ in response to stress such as ionizing radiation,” David Gewirtz, a pharmacologist at Virginia Commonwealth University who was not involved in the study, tells The Scientist in an email. Members of his own laboratory had also observed such breaks, he writes, but were unable to determine their origin. “The ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Headshot of Sophie Fessl

    Sophie Fessl is a freelance science journalist. She has a PhD in developmental neurobiology from King’s College London and a degree in biology from the University of Oxford. After completing her PhD, she swapped her favorite neuroscience model, the fruit fly, for pen and paper.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control