Cell Diversity Could Spell Trouble for Animal Models of Cancer

Tracking human cancers in mice shows some unexpected cell changes that could undermine translational research.

Written byDavid Adam
| 3 min read
grey and purple cancer cells under a microscope
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A common technique used to generate tumor cells for cancer research could produce misleading and unrepresentative results, a new study shows. Because cancer cells taken directly from patients are scarce, researchers often culture these human-derived cells inside successive generations of mice. They then study such “passaged” cells to see how they behave and how the disease might respond to treatment.

The new findings highlight a serious limitation with this procedure: human cancer cells passaged in this way end up very different from the cells in the original tumor samples. Specifically, such serial transplantation leaves behind less than 1 percent of the cells present in the human disease. Studying such unrepresentative cell populations raises doubts about the extent to which the results can be applied back to people.

“Transplantation into mice is the number one preclinical model that people use. And that model itself induces some selection that people really hadn’t ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH