Cheese Preservative Slows Oral Cancer Spread in Mice: Study

The results add to mounting evidence of microbes’ roles in tumor growth and point to the possibility of impeding malignancies by inhibiting bacteria.

Written byMax Kozlov
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Oral cancer cells (left) are infected with one of three periodontal pathogens (stained in green) for two hours before being injected into the mouth of mice. Treponema denticola (right) can be seen invading oral cancer cells, which researchers found leads to a more aggressive cancer.
ALLAN RADAIC AND LEA SEDGHI, UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

In the last few decades, scientists have identified more than a dozen pathogens—from human papillomavirus to Helicobacter pylori—that contribute to the progression of cancers. In a study published today (October 1) in PLOS Pathogens, researchers demonstrate the mechanism by which three oral bacteria found in cells of the gums promote oral squamous cell carcinoma (OSCC) tumor development and progression in mice. And they show that a bacteriocin, an antimicrobial peptide that bacteria produce, counters the effects of the oral bacteria and slows tumor growth.

“This study fits in nicely in a growing body of evidence ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Max is a science journalist from Boston. Though he studied cognitive neuroscience, he now prefers to write about brains rather than research them. Prior to writing for The Scientist as an editorial intern in late 2020 and early 2021, Max worked at the Museum of Science in Boston, where his favorite part of the job was dressing in a giant bee costume and teaching children about honeybees. He was also a AAAS Mass Media Fellow, where he worked as a science reporter for the St. Louis Post-Dispatch. Read more of his work at www.maxkozlov.com.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies