CRISPR Corrects Duchenne-Causing Mutations

Using CRISPR-Cpf1 gene editing, researchers have fixed mutations that cause a form of muscular dystrophy in cultured human cardiomyocytes and a mouse model.

head shot of blond woman wearing glasses
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Cardiomyocytes from patients with Duchenne muscular dystrophy (DMD) corrected by CRISPR-Cpf1 reframing during stemness (right) show restored dystrophin expression (red), compared to uncorrected cells (left). SCIENCE ADVANCES, Y. ZHANG ET AL. Researchers have been studying the CRISPR-Cas9 gene-editing system as a potential therapeutic tool to modify or delete pathogenic sequences within the human genome. Now, using a more recently discovered system, CRISPR-Cpf1, researchers have demonstrated its utility in correcting disease-causing mutations within the human and mouse genomes. In a paper published today (April 12) in Science Advances, a team led by researchers at the University of Texas (UT) Southwestern Medical Center described how it corrected Duchenne muscular dystrophy (DMD)–causing mutations in patient-derived stem cells and in a mouse model of the disease. Cpf1-based gene editing was able to at least partially restore function in cultures heart muscle cells derived from a DMD patient. The work is a proof of the concept that CRISPR-Cpf1 gene editing could be further developed to correct other disease-causing mutations.

“The authors use CRISPR-Cfp1 to correct the Dmd mutation in vitro and ex vivo,” Harvard Stem Cell Institute’s Amy Wagers, who was not involved in the work, wrote in an email to The Scientist. “This study nicely adds to the repertoire of tools available for Dmd editing, showing that Cpf1—like Cas9 nucleases evaluated in prior studies—is also effective for targeting frame-disrupting mutations in Dmd.”

“This exciting work offers another gene-editing reagent that could potentially be used in clinical settings in the future,” said Renzhi Han, who studies the molecular mechanisms of muscular dystrophies at the Ohio State University Medical Center and also was not involved in the study.

DMD, a fatal X-linked disease that results in progressively weakened skeletal and heart muscles, is caused by ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo