CRISPR Helps Mice Hear

Researchers reduce the severity of hereditary deafness in mice with the delivery of CRISPR-Cas9 protein-RNA complexes that inactivate a mutant gene in their inner ears.

abby olena
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ISTOCK, ALUXUMPeople and mice with a certain dominant mutation in Tmc1—a gene required for normal function of the hair cells that sense sound waves in the inner ear—experience progressive hearing loss. In a study published today (December 20) in Nature, researchers have reduced this hearing loss in mice using a CRISPR-Cas9 genome-editing strategy to inactivate the mutated copy of the gene.

“It’s a pretty significant piece of work,” says Peter Barr-Gillespie, a sensory biologist at Oregon Health and Science University who was not involved in the study. “It shows that CRISPR-mediated gene editing can lead to real amelioration of hearing loss in vivo.”

The so-called Beethoven mouse model has the same point mutation in the mouse version of Tmc1 that in the human gene leads to progressive hearing loss, typically during childhood. Around three weeks, mice begin to lose some of their hearing, and by eight weeks they are profoundly deaf due to the death of hair cells.

Harvard chemical biologist David Liu and colleagues designed a guide RNA that specifically targets the disease-causing copy of the gene, which is autosomal-dominant, to allow the healthy allele ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo