CRISPR Therapy in a Dish

Redirecting the gene-editing tool to modulate gene expression, researchers restore protein function in cells from a child with Duchenne muscular dystrophy.

kerry grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIPEDIA, BEN.LAFRANCECRISPR is best known for its use in gene editing—slicing up base pairs to disable genes or correct genetic sequences. But by neutering the Cas9 nuclease typically involved in CRISPR, researchers can instead regulate the activity of a targeted gene. Using this approach, scientists have boosted levels of a protein in cells from a patient with a genetic disease called Duchenne muscular dystrophy (DMD).

People with DMD, a severe neuromuscular disorder, don’t make the protein dystrophin. But its absence can be compensated for by utrophin, a cytoskeletal protein. So Ronald Cohn of the Hospital for Sick Children in Toronto and his team used CRISPR to turn up production of utrophin.

“Remarkably, we demonstrated that several [single guide] RNAs targeting either promoter A or B upregulated utrophin amounts such that they were 1.7- to 2.7-fold or 3.8- to 6.9-fold, respectively, higher than basal amounts,” the authors wrote in their report, which will be published next month (January 7) in the American Journal of Human Genetics.

The study offers a potential therapeutic strategy to deploy CRISPR to treat this disease. “Even a modest ~1.7-fold increase in the amount of utrophin (in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits