Crystal Structure, Murky Function

Scientists have determined the crystal structures of bacterial translocator proteins, but their functions remain unclear.

Written byRuth Williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Crystal structure of TSPO from Rhodobacter sphaeroidesFEI LI

Translocator protein (TSPO) is highly conserved across the kingdoms of life and, in humans, is implicated in a variety of diseases. This integral mitochondrial membrane protein is undoubtedly important, but its exact function is a matter of controversy. Two papers published today (January 29) in Science describing the crystal structure of bacterial TSPO should help resolve the matter, although they contradict a previously proposed structure.

“The structures themselves are really beautiful,” said structural biologist Chris Tate of the Medical Research Council’s Laboratory of Molecular Biology in Cambridge, UK, who was not involved in the studies. “Membrane proteins are very difficult to work on . . . so when you have two independent groups actually coming up with seemingly identical or very similar structures, it’s very ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo