Decoding Bacterial Methylomes

A new technique could soon spur unprecedented insight into the role of bacterial epigenetics in the evolution of pathogen virulence.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Characterizing methylation in Salmonella could help scientists differentiate between strains and better understand virulence.FLICKR, NATHAN READINGScientists have sequenced thousands of bacterial genomes, and even demonstrated that it is possible to sequence whole genomes of emerging pathogens within days. But they are now beginning to uncover another layer of information that appears to be critical for understanding—and maybe controlling—bacterial pathogenicity: epigenetic modifications.

The ability to detect epigenetic additions to bacterial genomes is relatively new, supported by a sequencing machine from Pacific Biosciences (PacBio) that has been available commercially for just 2 years and supportive software released less than 7 months ago. But already, the technique is making waves in microbiology.

In the midst of the 2011 Escherichia coli outbreak in Germany that killed more than 50 people, Eric Schadt, director of the Icahn Institute for Genomics and Multiscale Biology at the School of Medicine at Mount Sinai and former chief scientific officer of PacBio, rapidly sequenced the dangerous bacteria using the PacBio sequencer. His team—along with other groups that were also sequencing the bacterium— discovered that it had acquired a Shiga toxin from a phage that could ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Kate Yandell

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo