Decoding Bacterial Methylomes

A new technique could soon spur unprecedented insight into the role of bacterial epigenetics in the evolution of pathogen virulence.

Written byKate Yandell
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Characterizing methylation in Salmonella could help scientists differentiate between strains and better understand virulence.FLICKR, NATHAN READINGScientists have sequenced thousands of bacterial genomes, and even demonstrated that it is possible to sequence whole genomes of emerging pathogens within days. But they are now beginning to uncover another layer of information that appears to be critical for understanding—and maybe controlling—bacterial pathogenicity: epigenetic modifications.

The ability to detect epigenetic additions to bacterial genomes is relatively new, supported by a sequencing machine from Pacific Biosciences (PacBio) that has been available commercially for just 2 years and supportive software released less than 7 months ago. But already, the technique is making waves in microbiology.

In the midst of the 2011 Escherichia coli outbreak in Germany that killed more than 50 people, Eric Schadt, director of the Icahn Institute for Genomics and Multiscale Biology at the School of Medicine at Mount Sinai and former chief scientific officer of PacBio, rapidly sequenced the dangerous bacteria using the PacBio sequencer. His team—along with other groups that were also sequencing the bacterium— discovered that it had acquired a Shiga toxin from a phage that could ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH