Detecting Protein Clumps

A synthetic genetic tool called yTRAP allows high-throughput detection of protein aggregates in cells.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

AGGREGATION ASSAY: To detect clumping of a protein of interest, express it together with a synthetic transcriptional activator domain (grey). If the protein remains soluble, the reporter gene (green), which is under the control of a synthetic promoter that corresponds to the activator, will be expressed. If the proteins clump together, it will not. © GEORGE RETSECK
See full infographic: WEB

The aggregation of cellular proteins into insoluble clumps is a hallmark of many diseases, including Alzheimer’s, Parkinson’s, systemic amyloidosis, prion diseases, and type 2 diabetes. Protein agglomeration can also be a feature of normal cellular functions, such as signal transduction, synapse modification, and the regulation of RNAs during cellular stress.

Tools for studying such physiological and pathological protein aggregations, however, are limited, explains biomedical engineer Ahmad Khalil of Boston University. The principal options for researchers, he says, are either to destroy cells and analyze their innards for protein aggregates, or append a fluorescent tag to the proteins of interest within cells and view the formation of clumps (bright spots) with a microscope.

While this second option maintains the protein’s normal physiological surroundings, Khalil says, “inherently ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

February 2018

Plant Science to the Rescue

Research on plant microbiomes and viruses could save our food supply

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies