Detecting Protein Clumps

A synthetic genetic tool called yTRAP allows high-throughput detection of protein aggregates in cells.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

AGGREGATION ASSAY: To detect clumping of a protein of interest, express it together with a synthetic transcriptional activator domain (grey). If the protein remains soluble, the reporter gene (green), which is under the control of a synthetic promoter that corresponds to the activator, will be expressed. If the proteins clump together, it will not. © GEORGE RETSECK
See full infographic: WEB

The aggregation of cellular proteins into insoluble clumps is a hallmark of many diseases, including Alzheimer’s, Parkinson’s, systemic amyloidosis, prion diseases, and type 2 diabetes. Protein agglomeration can also be a feature of normal cellular functions, such as signal transduction, synapse modification, and the regulation of RNAs during cellular stress.

Tools for studying such physiological and pathological protein aggregations, however, are limited, explains biomedical engineer Ahmad Khalil of Boston University. The principal options for researchers, he says, are either to destroy cells and analyze their innards for protein aggregates, or append a fluorescent tag to the proteins of interest within cells and view the formation of clumps (bright spots) with a microscope.

While this second option maintains the protein’s normal physiological surroundings, Khalil says, “inherently ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.

Published In

February 2018

Plant Science to the Rescue

Research on plant microbiomes and viruses could save our food supply

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo