Dying Light Marks the Spot

Drug-delivering nanoparticles designed to glow when their target cells die can report on the effectiveness of cancer therapies within just a few hours of treatment, a mouse study shows.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Nanoparticles glow fluorescent green as cells sensitive to drugs produce the capsase enzyme. BRIGHAM AND WOMEN’S HOSPITAL, ASHISH KULKARNIMost methods traditionally used to monitor the effectiveness of a cancer treatment, such as positron emission tomography (PET) and magnetic resonance imaging (MRI) scans, detect decreases in tumor size only after several rounds of therapy. But researchers at Brigham and Women’s Hospital in Boston have now developed a technique that causes drug-transporting nanoparticles to glow with fluorescence as their target cells die, making it possible to visualize the effectiveness of a therapy much sooner than with standard methods. The team described its technique in a mouse study published yesterday (March 28) in PNAS.

“Using this approach, the cells light up the moment a cancer drug starts working,” study coauthor Shiladitya Sengupta of Brigham and Women’s said in a statement. “We can determine if a cancer therapy is effective within hours of treatment.”

In the new method, tested in tumor-bearing mice, the researchers used nanoparticles of approximately 100 nanometers in diameter to deliver both a cytotoxic drug and a fluorescent reporter to tumor cells. The fluorescent reporter had been designed to glow only in the presence of capsase—an enzyme produced when cells die, thus producing a visual indicator of a treatment’s success within only a few hours of its administration.

After trialing the method with both a common chemotherapeutic agent, paclitaxel, and an anti-PD-L1 immunotherapy, “we’ve demonstrated that this ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Catherine Offord

    Catherine is a science journalist based in Barcelona.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer