Eat Less and Live Longer?

Mice on a low-calorie diet harbor a distinct population of gut microorganisms that helps prolong life.

Written byDebamita Chatterjee
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, WUALEXScientists have shown a link between long-living calorie-restricted mice and the types of microbes residing in the guts of those mice. The finding, published last month (July 16) in Nature Communications, suggests a novel mechanism of living longer by establishing the right kind of microbes in our gut through a low-calorie diet.

“[The study] underlined the effectiveness of the healthy modulation of the gut microbiota along with diet specificities,” Jean-Paul Vernoux, a professor of food toxicology at the University of Caen in France who was not involved with the study, said in an email to The Scientist.

Caloric restriction has been known to extend life span in a variety of organisms, including humans, though the molecular mechanisms of this effect are not known. Recent research has begun to outline the role of the apparently innocuous microbes of the gut in modulating metabolism and immunity of their host. Based on these findings, Liping Zhao of Shanghai Jiao Tong University and his colleagues wondered if caloric restriction may prolong life span by modulating the type and composition of gut ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH